Schlagwortarchiv für: Höhentraining

Höhentraining ist mittlerweile eine etablierte Trainingsmethode im Ausdauersport, die auf den positiven Einfluss von hypoxischen (sauerstoffarmen) Bedingungen auf die physiologische Leistungsfähigkeit abzielt. In den letzten Jahren haben zahlreiche Studien versucht, die genauen Mechanismen und die Effektivität des Höhentrainings besser zu verstehen. Dieser Beitrag bietet eine umfassende Übersicht über die aktuellen wissenschaftlichen Erkenntnisse zu Höhentraining im Ausdauersport.

Physiologische Mechanismen des Höhentrainings

Das Training in großen Höhen hat eine signifikante Wirkung auf die Ausdauerleistung, da es den Körper an die Bedingungen mit vermindertem Sauerstoffgehalt (Hypoxie) anpasst. Hier sind die Hauptauswirkungen:

  1. Erhöhung der Hämoglobin- und Erythrozytenkonzentration
    Bei längerem Aufenthalt in großer Höhe erhöht der Körper die Produktion von Erythropoetin (EPO), einem Hormon, das die Bildung roter Blutkörperchen (Erythrozyten) stimuliert. Mehr rote Blutkörperchen führen zu einer verbesserten Sauerstofftransportkapazität im Blut, was bei der Rückkehr auf Meereshöhe die Sauerstoffversorgung der Muskeln optimiert. Dies erhöht die aerobe Kapazität und kann zu einer gesteigerten Ausdauerleistung führen.
  2. Effizientere Sauerstoffnutzung
    Durch den Sauerstoffmangel in der Höhe wird der Körper gezwungen, effizienter mit dem verfügbaren Sauerstoff umzugehen. Das Mitochondrienvolumen in den Muskeln kann zunehmen, was die Fähigkeit der Zellen verbessert, Sauerstoff für die Energieproduktion zu nutzen. Dies führt zu einer gesteigerten aeroben Ausdauerleistung bei gleichen Trainingsintensitäten auf Meereshöhe.
  3. Verbesserung der Puffersysteme
    Höhentraining führt oft zu einer Verbesserung der Pufferkapazität des Blutes und der Muskeln. Dadurch wird der Anstieg der Laktatkonzentration bei intensiver Belastung verzögert, was zu einer Verbesserung der anaeroben Schwelle und der Ausdauerleistung führt.
  4. Herz-Kreislauf-Anpassungen
    Das Herz-Kreislauf-System passt sich ebenfalls an, indem es das Schlagvolumen und die Kapillarbildung in den Muskeln erhöht. Mehr Kapillaren bedeuten eine bessere Durchblutung und Sauerstoffversorgung der Muskelzellen, was die Ausdauer fördert.
  5. Steigerung der VO2max
    Die maximale Sauerstoffaufnahmefähigkeit (VO2max), ein wichtiger Indikator für die Ausdauerleistung, kann durch Höhentraining steigen. Dieser Anstieg ist auf die verbesserte Sauerstofftransportkapazität und -nutzung zurückzuführen.
  6. Verbesserte Muskeladaptationen
    In der Höhe passt sich auch die Muskelfaserstruktur an. Typ-1-Muskelfasern (langsam zuckend und ausdauernd) können vermehrt Energie aus Sauerstoff beziehen, was die aerobe Leistungsfähigkeit der Muskeln steigert.
ENGADIN RADMARATHON 2019 Spektakuläres Panorama und wunderbares Biest © Sportograf

Trainingsmodelle

Es gibt verschiedene Modelle des Höhentrainings, die unterschiedlich angewendet werden, je nach Zielsetzung und den verfügbaren Ressourcen.

  1. Live High, Train Low (LHTL)
    Athleten leben in großer Höhe (2.000 bis 3.000 Meter über dem Meeresspiegel) und trainieren auf Meereshöhe oder in geringerer Höhe. Dieses Modell gilt als besonders effektiv, weil es die Vorteile der erhöhten Erythrozytenproduktion maximiert und gleichzeitig eine hohe Trainingsintensität ermöglicht, die in großer Höhe oft eingeschränkt ist. Studien zeigen, dass LHTL die maximale Sauerstoffaufnahme (VO2 max) und die Wettkampfleistung signifikant verbessern kann.
  1. Live Low, Train High (LLTH)
    Bei diesem Modell leben Athleten auf Meereshöhe, trainieren aber in großen Höhen. Diese Methode zielt darauf ab, die muskuläre Anpassung an hypoxische Bedingungen zu verbessern. Der Vorteil besteht darin, dass intensive Trainingsbelastungen möglich sind, während dennoch die Anpassungen an die Sauerstoffknappheit gefördert werden. Die Wirksamkeit dieser Methode ist umstritten, da die positiven Effekte auf die Leistungsfähigkeit weniger konsistent als bei LHTL sind.
  1. Intermittierendes Höhentraining
    Hierbei verbringen Athleten nur kurze Zeiträume in großer Höhe oder hypoxischen Umgebungen, oft kombiniert mit normalem Training auf Meereshöhe. Diese Methode kann durch den Einsatz von Hypoxiezelten oder hypoxischen Trainingsräumen erreicht werden. Die Effekte dieser Methode sind variabel und hängen stark von der individuellen Reaktion des Athleten ab. Sie wird jedoch zunehmend populär, da sie flexibel einsetzbar ist und keine langen Aufenthalte in der Höhe erfordert.
TRIATHLON MUNICH2022 EM Training & Vorbereitung / Grossglockner © SUGAR & PAIN

Wissenschaftliche Erkenntnisse zur Wirksamkeit

Die Effektivität des Höhentrainings ist ein zentrales Thema in der Sportwissenschaft. Die Ergebnisse aus Studien zeigen ein differenziertes Bild:

  1. Leistungssteigerung
    Zahlreiche Studien bestätigen, dass Höhentraining die aerobe Kapazität und die Ausdauerleistung verbessern kann. Dies ist besonders beim LHTL-Modell der Fall, das in verschiedenen Sportarten von Marathon bis Radsport erfolgreich angewendet wurde. Die Verbesserung der VO2max und der damit verbundenen Ausdauerleistung ist einer der am besten dokumentierten Vorteile.
  1. Individuelle Variabilität
    Die Reaktionen auf Höhentraining sind individuell sehr unterschiedlich. Während einige Athleten signifikante Leistungssteigerungen erfahren, zeigen andere wenig bis keine Verbesserung. Dies hängt von genetischen Faktoren, der Ausgangsfitness und der spezifischen Anpassungsfähigkeit an die Höhe ab. Studien legen nahe, dass genetische Marker identifiziert werden könnten, die vorhersagen, wer am meisten von Höhentraining profitiert.
  1. Risiken und Nebenwirkungen
    Ein zu langer oder zu intensiver Aufenthalt in der Höhe kann negative Effekte wie Übertraining, Immunsuppression oder Eisenmangel hervorrufen. Eisenmangel kann besonders problematisch sein, da die gesteigerte Produktion von roten Blutkörperchen den Eisenbedarf des Körpers erhöht. Auch die psychische Belastung durch das Leben in großer Höhe, verbunden mit Schlafproblemen und allgemeinem Unwohlsein, darf nicht unterschätzt werden.
SUGAR & PAIN TRI CAMP #CH20 – Das Triathlon Traningslager im Chiemgau 2020 / Spektakuläre Trail Runs durch die Chiemgauer Voralpen © SUGAR & PAIN / Adobe Stock

Neueste Entwicklungen und Technologien

In den letzten Jahren hat die Forschung zu Höhentraining einige interessante Entwicklungen hervorgebracht:

  1. Hypoxiezelte und künstliche Höhenkammern
    Diese Technologien ermöglichen es Athleten, Höhentraining unabhängig von der geografischen Lage durchzuführen. Hypoxiezelte simulieren die Bedingungen großer Höhe durch eine Reduktion des Sauerstoffgehalts in der Atemluft. Dies erlaubt es Athleten, im Alltag auf Meereshöhe zu leben und dennoch die Vorteile des Höhentrainings zu nutzen. Studien zeigen, dass diese Methoden vergleichbare Effekte auf die Leistungsfähigkeit haben können wie herkömmliches Höhentraining, wenn sie korrekt angewendet werden.
  1. Kombination mit anderen Trainingsmethoden
    Aktuelle Forschungen untersuchen, wie Höhentraining mit anderen Trainingsmethoden, wie hochintensivem Intervalltraining (HIIT), kombiniert werden kann, um die Trainingseffekte weiter zu maximieren. Diese Kombinationen könnten es ermöglichen, spezifische Anpassungen noch gezielter zu fördern. Erste Ergebnisse deuten darauf hin, dass eine solche Kombination besonders effektiv sein könnte, um die anaerobe Kapazität und die Laktattoleranz zu verbessern.

Fazit

Höhentraining bleibt eine wertvolle Methode im Ausdauersport, insbesondere wenn es um die Verbesserung der aeroben Kapazität und der Ausdauerleistung geht. Das LHTL-Modell hat sich als besonders effektiv erwiesen, während andere Methoden wie LLTH und intermittierendes Höhentraining je nach individueller Anpassungsfähigkeit des Athleten ebenfalls Vorteile bieten können. Neuere Technologien und Kombinationen von Trainingsmethoden erweitern die Möglichkeiten, die Vorteile des Höhentrainings zu nutzen.

Es bleibt jedoch wichtig, die individuellen Unterschiede und potenziellen Risiken zu berücksichtigen, um sicherzustellen, dass Höhentraining optimal und sicher angewendet wird. Die laufende Forschung in diesem Bereich verspricht, weiterhin wertvolle Erkenntnisse zu liefern, die dazu beitragen können, Höhentraining noch effektiver zu gestalten.

Das könnte dich auch interessieren …

SCIENCE / Resilienz – Die Widerstandsfähigkeit im Triathlonsport
SCIENCE / VO2 MAX Wichtiger Indikator der Ausdauerleistungsfähigkeit
SCIENCE / VLA MAX DIe BEdeutung der maximalen Laktatkapazität

  1. Wilber, R. L. (2007). „Altitude Training and Athletic Performance“
    Dieses Buch bietet einen umfassenden Überblick über die physiologischen Anpassungen an das Höhentraining und deren Auswirkungen auf die sportliche Leistung.
  2. Bonetti, D. L., & Hopkins, W. G. (2009). „Sea-level exercise performance following adaptation to hypoxia: a meta-analysis“ in Sports Medicine
    Diese Meta-Analyse untersucht, wie sich das Höhentraining auf die Leistungsfähigkeit auf Meereshöhe auswirkt, einschließlich einer Übersicht über die Wirkmechanismen.
  3. „Gore, C. J., & Hopkins, W. G. (2005). „Counterpoint: Positive effects of intermittent hypoxia (live high-train low) on exercise performance are not mediated primarily by augmented red cell volume“ in Journal of Applied Physiology
    Dieser Artikel diskutiert die Wirkungen der „Live high, train low“-Strategie und deren Effekte auf die Ausdauerleistung, wobei auch nicht-hämatologische Anpassungen untersucht werden.
  4. Levine, B. D., & Stray-Gundersen, J. (1997). „Living high-training low: effect of moderate-altitude acclimatization with low-altitude training on performance“ in Journal of Applied Physiology
    Ein wegweisender Artikel, der die Effekte des „Live high, train low“-Ansatzes detailliert beschreibt und wie dieser die sportliche Leistung verbessert.
  5. Saunders, P. U., Telford, R. D., Pyne, D. B., Cunningham, R. B., Gore, C. J., & Hahn, A. G. (2004). „Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure“ in Journal of Applied Physiology
    Diese Studie zeigt, wie sich eine moderate Höhenexposition auf die Laufökonomie und die Leistung von Spitzensportlern auswirkt.